9 research outputs found

    Conceptualising and designing a collaborative blended e-learning environment for schools: drawing from evidence-based practices

    Get PDF
    An exploration into two different approaches used by teachers to personalise teaching and learning within their classroom and schools is presented in this paper. The first approach involves a process of collaborative work-based action research and the second involves collaborative use of a computer-aided on-line assessment for learning tool. Both approaches are exemplified by purposive selection of case studies where teachers utilise assessment for learning in order to personalise teaching and learning and raise outcomes for pupils. In this paper we draw upon findings from this exploration to inform and validate the conceptualisation and design of an integrative model for a collaborative blended e-learning environment within which teachers and pupils are engaging in reciprocal learning

    Redesigning learning games for different learning contexts: Applying a serious game design framework to redesign Stop & Think

    Get PDF
    The Activity Theory-based Model of Serious Games (ATMSG) provides a visual framework through which designers and researchers can explicitly map the gaming, learning, and instructional design of their learning game mechanics and game flow. Here, we use the ATMSG to redesign an existing learning game, Stop & Think (S&T), which was created to train children to apply their inhibitory control skills when solving counterintuitive mathematics and science problems. S&T was previously found to be effective at increasing science and mathematics achievement when the activity was led by a teacher in the classroom. However, we sought to modify its design for use by children in an independent learning scenario (e.g., homeschooling). This work contributes to the literature by demonstrating how the ATMSG was used iteratively during the redesign of S&T for use in a child-led context. We found the ATMSG useful for (i) identifying design gaps created by removing the teacher from the gaming activity, thereby outlining areas of the game requiring modification, (ii) ideation to facilitate discussion about how different design ideas would impact the structure of the game and the feasibility of the approach, (iii) negotiating design decisions between team members, communicating proposed changes in the design amongst stakeholders, seeking approval from project leaders, and serving as a design document for developers, and (iv) cataloguing changes made to the game throughout the redesign process, thereby archiving versions of the game which can be used to reflect upon how each version might impact counterintuitive reasoning. Yet, we also found some challenges in using the ATMSG, including its lack of ability to represent non-structural design decisions (e.g., visual strategies, adaptivity), its impractical format for representing more complex games, and its time-consuming nature

    How Do Executive Functions Influence Children’s Reasoning About Counterintuitive Concepts in Mathematics and Science?

    Get PDF
    Many scientific and mathematical concepts are counterintuitive because they conflict with misleading perceptual cues or incorrect naive theories that we build from our everyday experiences of the world. Executive functions (EFs) influence mathematics and science achievement, and inhibitory control (IC), in particular, might facilitate counterintuitive reasoning. Stop & Think (S&T) is a computerised learning activity that trains IC skills. It has been found effective in improving primary children’s mathematics and science academic performance in a large scale RCT trial (Palak et al., 2019; Wilkinson et al., Journal of Cognitive Enhancement, 4, 296–314, 2020). The current study aimed to investigate the role of EFs and the moderating effects of S&T training on counterintuitive mathematics and science reasoning. A sample of 372 children in school Years 3 (7- to 8-year-olds) and 5 (9- to 10-year-olds) were allocated to S&T, active control or teaching as usual conditions, and completed tasks assessing verbal and visuospatial working memory (WM), IC, IQ, and counterintuitive reasoning, before and after training. Cross-sectional associations between counterintuitive reasoning and EF were found in Year 5 children, with evidence of a specific role of verbal WM. The intervention benefited counterintuitive reasoning in Year 3 children only and EF measures were not found to predict which children would most benefit from the intervention. Combined with previous research, these results suggest that individual differences in EF play a lesser role in counterintuitive reasoning in younger children, while older children show a greater association between EFs and counterintuitive reasoning and are able to apply the strategies developed during the S&T training to mathematics and science subjects. This work contributes to understanding why specifically the S&T intervention is effective. This work was preregistered with the ISRCTN registry (TRN: 54726482) on 10/10/2017

    Domain-Specific Inhibitory Control Training to Improve Children’s Learning of Counterintuitive Concepts in Mathematics and Science.

    Get PDF
    Evidence from cognitive neuroscience suggests that learning counterintuitive concepts in mathematics and science requires inhibitory control (IC). This prevents interference from misleading perceptual cues and naïve theories children have built from their experiences of the world. Here, we (1) investigate associations between IC, counterintuitive reasoning, and academic achievement and (2) evaluate a classroom-based computerised intervention, called Stop & Think, designed to embed IC training within the learning domain (i.e. mathematics and science content from the school curricula). Cross-sectional analyses of data from 627 children in Years 3 and 5 (7- to 10-year-olds) demonstrated that IC, measured on a Stroop-like task, was associated with counterintuitive reasoning and mathematics and science achievement. A subsample (n = 456) participated either in Stop & Think as a whole-class activity (teacher-led, STT) or using individual computers (pupil-led, STP), or had teaching as usual (TAU). For Year 3 children (but not Year 5), Stop & Think led to better counterintuitive reasoning (i.e. near transfer) in STT (p < .001, ηp2 = .067) and STP ((p < .01, ηp < .01, ηp 2 = .041) compared to TAU. Achievement data was not available for Year 3 STP or Year 5 STT. For Year 3, STT led to better science achievement (i.e. far transfer) compared to TAU (< .05, ηp2 = .077).There was no transfer to the Stroop-like measure of IC. Overall, these findings support the idea that IC may contribute to counterintuitive reasoning and mathematics and science achievement. Further, we provide preliminary evidence of a domain-specific IC intervention with transferable benefits to academic achievement for Year 3 children
    corecore